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STABILITY OF CIRCULAR PLATES FROM AGEING VISCOELASTIC MATERIAL* 

A.D. DROZDOV AND D.M. ZHUKHOVITSKII 

Stability conditions are obtained for circular plates of an inhomogeneously- 
ageing viscoelastic material for an arbitrary creep kernel and different 
methods of plate support. Stability in an infinite time interval 
corresponds to determination of the Lyapunov stability, and in a finite 
interval, Chetayev stability. 

1. Formulation of the problem. Consider the axisymmetric deformation of a circular 
plate of constant thickness h and radius R. We introduce a cylindrical rcpz coordinate 
system whose origin is at the centre of the plate middle plane in the undeformed state, while 
the z-axis is perpendicular to this plane. At a time t= 0 an external load is applied to 
the plate. We denote the age of the plate material at the point r at the time of external 
load application by p(r). The function p(r) is piecewise-continuous and bounded. 

The stress qri and strain eii tensor components (i, j = r,(p,z) are connected by the 
relationships 

e,, = (1 + Y) (I + L) Q/E, E = (1-2~) a/E 

s*) = E (1 + v)-’ (I - N) eij, u = E (1-2~)~' E 

a=(% + %, + %)/3, c= (+r + %pP + %)/3 
eij Z Qj - e&j, Sij = Uij - U6ij 

(1.1) 

Is = 5 (t), Lz=SZ(t+p,r+p)+(r)dr, 
0 

ivz&(t+p,r+p)r(r)dr 

II 

Here E is the constant modulus of elastic instantaneous deformation, v is the constant 
Poisson's ratio, hij are Kronecker deltas, I is the unit operator, L is the creep operator, 
N is the relaxation operator, and l(t,-c) and n(t, 2) are the creep and relaxation kernels. 

The external load applied to the plate consists of a transverse distributed load of 
intensity q(r)and compressive forces of constant magnitude p. 

Let w({,r) denote the plate deflection at the point r at the time t, W. the maximum 
allowable value of the deflection, and To the first time the deflection reaches the value mO. 

Definition 1. A plate is called Lyapunov stable in an infinite time interval if for any 
a>0 there exists a S(s)>0 such that the estimate 1 w(t,r)l<e (t>O, re [O, RI) follows 
from the inequality 1 p(r)1 < 6 

Definition 2. A plate is called stable in an interval [O, T] if T< T,. 
The aim of this paper is to obtain the conditions for the magnitudes of the compressive 

forces p for which the plate is stable according to Defintions 1 and 2. 

2. Governing equations. Suppose an axisymmetric generalized plane state of stress 
exists in the plate. Then a, = 0 and the quantities o,,(i = r, cp,z) can be neglected. We 
consequently obtain from (1.1) 

UT,, = E (1 - v2)-l [(i -v) (Z-N) e,, + v (I - K) (err + e,,)l 

U cpT = E (i - v’)-l [(I - V) (Z - N)E,, + v (1 - K) (Err + +,,)I 

K = N {I - (1 + v) (1 - 2~) (3v - 3vz)-' [I + (1 + v) x (3-3v)-1 L]-l} 

(2.1) 
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Let k(t, z) denote 
We consider that a 

the kernel of the operator K. 

function m(t, T) exists such that for all O.$z,< t,O,< r\< R 

0 < n (t + P, T + P), k (t + P, = + P) < m 0, r) (2.2) 

ImI=eup,Sm(t,r)dr<l 
0 

According to Kirchhoff's hypothesis /2/ 

eW=Wz, e,,=r-Wz, 6=-w' (w'=aw/dr) (2.3) 

where z is the distance from the middle plane of the plate. By virtue of (2.1) and (2.31, 
the bending moments are given by the formulas 

hls 

M,= s a,zdz=~[(1-v)(z-~~)6’+v(z-~)(6’+r-~~~] 
--hD 

h/S 
Mq = S 

-h/a 
(J$~z dz = D [(I - V) (I - NJ r-16 + v (I--K) (W + r-AS)] 

(2.4) 

D = Ehs 112 (1 - $)I-’ 

If the plate deflection equals zero, then a state of stress and strain characterised by 
the stress tensor oil0 is realized therein. Let the angles of rotation of the plate elements 
be small compared with one and let their squares be neglected. The elongations and shears 
are substantially less than the angles of rotation and they can be neglected /2/. Then the 
equilibrium equations of a plate element in the bent state have the form /3/ 

0 
(ru,,‘)’ - a,, = 0 

(rM,)’ - M, -. rQr = 0, (rQ,)’ + rq + h (ru,Ow’)’ = 0 

(2.5) 

(2.6) 
hlP 

Or= 1 u.,,dz 
-h/n 

we give the boundary conditions in the form 

6 (t, 0) = 0; 6 (t, R) = 0 (2.7) 

o,"(t, RR) = P (2.8) 

The first condition in (2.7) means that under symmetric bending the angle of rotation of 
the normal at the centre of the plate is zero. The second condition in (2.7) corresponds to 
stiff clamping of the plate edges. 

Let Q0 denote the transverse force acting on unit length of the arc /4/ rp (r) =[rQ,,(r)l’. 
we differentiate the first equation of (2.6) with respect to r and add it to the second. 
According to (2.3), we obtain 

[(rM,)’ - MJ + rq - h (ro,V)’ = 0 

We substitute the expression for Q. into this equality and integrate with respect to r. 
Replacing the quantities M,, Mm in the relationship obtained in conformity with (2.4), we 
find /5/ 

[r (1 - v) (Z - N) 6’ + rv (I - K) (6’ + r9)l’ -[(I - V)X 

(I - IV) r-9 + Y (I - K) (6’ + r%Y)l = D-’ (hru,“it -rQJ 
(2.9) 

Eq.(2.9) with the boundary conditions (2.7) describes the deflection of a circular plate 
under an arbitrary transverse load. 

3. Derivation of the stability conditions. We introduce 

II f Ii' = S rP dr, II f IV = S rf* dr, II f llaa = S r (f’a + r-Y) dr 

I a 11% = S r ha + d&J dr, (0. e) = S r h+, + u,,e& dr 

(the integrals are evaluated between the limits 0 and R). 

the notation /6/ 

(3.1) 

We multiply (2.9) by s(t,r) and integrate over r between 0 and R. Integrating by parts 
and taking account of the boundary conditions (2.7), we obtain 

I( 6 lln* = (1- v) S r (WN6’ + r-WVr-It+) dr + (3.2) 

v S r (W + r-16) K (6’ -+ r-16) dr + D-l S rwo dr + 

hD-‘Sr(-um”)BPdr=(l-v)I~+vZ~+~~+I~ 
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From the Cauchy inequality and (2.2) we obtain the estimates 

(3.3) 

We find from (3.2) and (3.3) 

II 6 II2 < II 6 lb 5 m (6 ~1 II 6 IIH oh + /a-’ II (JO 11~11~ Ile + D-’ II Qo II * II 6 II (3.4) 
0 

We introduce the notation He = - r-‘[(re’)‘- r-‘fi]. We set 

h2 = inffl [(He, 6) 116 1j-2l, ho = infe [(He, 6) 116 /lo-'1 (3.5) 

(the infimums of the functional are defined over all functions s(t, r)fO that satisfy 

boundary conditions (2.7)). 

According to /6/, h>O and the inequality ho>0 will be proved below. Since 

11 fi 11' < A-* II 6 118'~ 11 'fb ilo < ho-'11 0 lb?, 

it follows from (3.4) that 

(1 - hD-'ho-l I a0 I. I ~1 ,) < I * I 1 6 II + WV II Q. II (3.8) 

I I-9 I. = SUP, II 0” II1 I -3 1. = SUP% II 6 Ila 

Theorem 1. Let 

I a0 1, < Dh,h-’ (1 - I m 1) (3.7) 

Then the plate is stable. 

Proof. It follows from inequalities (3.6) and (3.7) that a constant C,>O exists such 

that I 6 II =G CI II QO II. The assertion of the theorem follows from this inequality and the 

estimate 

I w (t, r) 1 < C, II 6 IIH Q C, I 6 II (C, > 0 is a constant) . 

As in /l/ it can be proved that the following holds. 

Theorem 3.2. Let there be a function m,(t,r) such that uniformly in t >to 

t 
lim [sup,In(t+p,~+p)--~(t,s)I+sup,Ik(t+p,~$p)--o(t,~)Ild~=O 

s 
Then the plate is stable for 1 t~“I,<Dh,h-1 (1 - Im,I). 

4. Estimates of the critical forces. we estimate II 19'11 in terms of p. To do 

this )I &'\I! is initially estimated in terms of II &'(I, then II ~~IIinterms of p. To obtain the 

first estimate we substitute expression (2.1) for the stress tensor components into II u'II.By 

a method analogous to that mentioned in Sect.3 we obtain 

II (Jo11 < I-2 (1 - y)-’ (1 + I m I) I 8 I‘, I 8 II = SUkII E” II (4.1) 

We now turn to the estimation of IE’~. in terms of p. We denote the radial displacement 

of points of the plate by u (t, r)_ We multiply (2.5) by u and integrate with respect to r 

between 0 and R. Integrating by parts and taking account of (2.8), we will have 

s r (U,.,“E,,” + U&3&) dr = - pRU (R) G Ja (Err0 = u', E,& = r%) 

Replacing the stress tensor components here by formulas (2-l), we obtain 

J12 SE 1 r [( 1 - Y) (E,.,- + e&,2,) + v (em0 + e&J81 dr = (I-+) E-l Jo + (4.2) 

1 r [(I - v) (e,,“Nbo -I- &N&d + v (e,,” + &) K (b’ + GJI dr 
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We transform the quantity JB in the following manner: 

J,=-pRu(R)=-pp((ru)‘dr=-p&” +e;ddr 

Then by the Cauchy inequality it is possible to obtain from (4.21, as in Sect.3, that 

JI* < JI i m (t, T) JI dr + (1- va) E-IpR 11 E” 11 
0 

Hence 

(1 - I m 1) I Jl I,* < (1 - v2) Em1 PR I d I,, I J, I6 = SUPS J, (4.3) 

But 

Jla 3 s r (e-w + 2v%,“e& + e&) dr > (1 - v) (1 e” ia 

Together with (4.3) and (4.1) this inequality yields the estimate 

11 @II < p = PR (1 i- v) (1 + 1 ml) [(I -v) (1 - 1 m I)]-’ (4.4) 

Using (4.4) for the estimate of II we conclude from (3.3) that the following holds. 

Theorem 4.1. If the assumptions of Theorem 3.1 are satisfied, then the plate is stable 
P < Dh&'(l - I m I). If the assumptions ofTheorem 3_2aresatisfied,then the plate is when 

stable when 
P < DA&-l (1 - 1 m, I) 

5. Stability in a finite time interval. The 
dependence of the critical time T, on the parameters of the 
problem was investigated numerically for the following values 
of the quantities /7/: R= i m, h= 0.05 m, I@,%)= -E~/&[IJJ(T) 
(1 - e-v"-")), k (t, T)EO, cp (%) = Ao + A,+, E=3.3.i04 MPa, A,= 
9.75 . 10-a MPa-I, A, = 46.2 .iO-4MPa-1 day, Y = 0.3, y = 0.03 day-l, 
Q. = qd2, q = 0.02 MPa, p = 0.1 MPa. 

The age of the plate material is described by a piecewise- 
constant function equal to pl= 3 days for Ogr<0.05 and P, 
for 0.05 <r< R. 

The dependence of the critical time T, on the maximum 
allowable deflection IU@ is represented in the figure. The 
dimensionless quantity y= &ml is plotted along the abscissa 
axis (wl is the value of the deflection corresponding to the 

elastic problem), and the critical time T, in days along the ordinate axis. Curves 1-3 
correspond to values of the parameter ps equal to 3, 22, and 60 days. 

A calculation shows thatthe critical time T, increases as p, grows. This dependence is 
strengthened as luO increases. 

6. Some remarks. lo. A constant c>o exists (/8/, p.84) such that 

llellf CSr(W'+r-W')dr 

Hence the inequality So>0 follows. 
2O. The stability conditions obtained hold even for other kinds of plate support. The 

parameters y,yO are found from (3.5) with boundary conditions corresponding to the type of 
support. 

3O. Let the plate material be homogeneous (P(~)=P,). Then eWo=-p. Ne let L, denote 
the minimum eigenvalue of the problem 

an 

1. 

2. 

(d’)’ - r-w + hfJ = 0, 6 (0) = 6 (It) = 0 

Theorem 6.1. We assume that 

P <Dbk-' (1 - I m I) (P <D&J+ (* - I m, I)) 

Then the homogeneous plate is stable. 
For lml=O the conditions obtained are in agreement with the stability conditions for 

elastic plate /9/. 
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A MATHEMATICAL MODEL OF THE PROBLEl'l OF DIAGNOSING A THERMOELASTIC MEDIUM* 

V.A. LOMAZOV and W.V. ~~ROVSK~I 

The diagnosis problem is understood to mean the problem of determining 

material characteristics by means of information on the physical fields 

originating therein under the influence of external effects. The problem 

is from the class of inverse problems of mathematical physics /l/ and 

is solved using the model of generalized thermomechanics for weakly 

anisotropic media. As a result of the analysis of wave processes in such 

a medium, a method is developed for determining the thermoelastic 

characteristics by means of the temperature and displacement values on 

the half-space boundary. Examples of calculating specific characteristics 

are examined. 

1. We shall consider the problem of diagnosing a thermoelastic medium within the framework 

of the model of generalized thermomechanics /2/ 

qj,j + C*W + T&jQj=O, Tqi + qj= -KRij@,i* Uij,j=&Xd; WI 
eij = -$ (8i.j + uj,i), Uij = CijEzetl - @gj0, i, j, k, I = i, 2,3 

Here C, is the specific heat for constant deformation, pll = Ci#xm,a~, are the coefficients 

of linear expansion, Cfjr, are the isothermal stiffness coefficients of an anisotropic material, 

&I are the thermal conductivities, z is the heat flux relaxation time, p is the density 

(the quantities listed above are functions of the space variables x = (z,,z,,z,)),~~ are 

components of the heat flux vector, 0 = (T-TT,) is the relative body temperature, eih %I 
are the strain and stress tensors, u1 are the displacement components (these quantities are 

functions of x and the time t), and T,=wnst is the body temperature in the natural state. 

The dots denote partial derivatives with respect to time, the subscript after the comma is the 

derivative with respect to the corresponding coordinate. Summation is over repeated subscripts. 

Unlike the dynamic equations of the theory of elasticity and the non-stationary heat 
conduction equations, the generalized thermomechanics equations describe the mutual influence 

of the deformation and temperature fields and also take account of the finiteness of the heat 

propagation velocity. It is important to take these effects into account in any study of the 

qualitative behaviour of the solution. At the same time, in quantitative respects taking 

them into account does not result in any appreciable difference between the solutions and the 

solutions of the elasticity and heat conduction theories in many cases /2, 3/. 

In view of this, we will assume that the terms To&&;, rq;, f$@ are small quantities of 

the order of e (O<E< 1) and the solution of system (1.1) {q,, O,url,eIjr Ui} differs from the 

function {qj, 8". UiP* Uj'}r which is a solution of the mutually uncoupled non-stationary equations 

of the theory of heat conduction and the dynamic equations of elasticity theory, by a quantity 

0 (s) 
qi,j + C ,"@" z 0, qy + Kij”e, i” = 0, a;, j = p%y (W 

%ja = -&(U;,j f u;, ill O,j”= C&xeiz, i, j, k, 2 = i, 2,3 

Here we ass- that 1 C, - C,” I, 1 Ktj - K,,O 1, j p - p” I. f C,~H - C*j&c 1 are alsO Of the order 


